EconPapers    
Economics at your fingertips  
 

Model Monitoring: A General Framework with an Application to Non-life Insurance Pricing

Alexej Brauer, Paul Menzel and Mario V. W\"uthrich

Papers from arXiv.org

Abstract: Maintaining the predictive performance of pricing models is challenging when insurance portfolios and data-generating mechanisms evolve over time. Focusing on non-life insurance, we adopt the concept-drift terminology from machine learning and distinguish virtual drift from real concept drift in an actuarial setting. Methodologically, we (i) formalize deviance loss and Murphy's score decomposition to assess global and local auto-calibration; (ii) study the Gini score as a rank-based performance measure, derive its asymptotic distribution, and develop a consistent bootstrap estimator of its asymptotic variance; and (iii) combine these results into a statistically grounded, model-agnostic monitoring framework that integrates a Gini-based ranking drift test with global and local auto-calibration tests. An application to a modified motor insurance portfolio with controlled concept-drift scenarios illustrates how the framework guides decisions on refitting or recalibrating pricing models.

Date: 2025-10, Revised 2025-12
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
http://arxiv.org/pdf/2510.04556 Latest version (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2510.04556

Access Statistics for this paper

More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().

 
Page updated 2025-12-09
Handle: RePEc:arx:papers:2510.04556