EconPapers    
Economics at your fingertips  
 

Inducing State Anxiety in LLM Agents Reproduces Human-Like Biases in Consumer Decision-Making

Ziv Ben-Zion, Zohar Elyoseph, Tobias Spiller and Teddy Lazebnik

Papers from arXiv.org

Abstract: Large language models (LLMs) are rapidly evolving from text generators to autonomous agents, raising urgent questions about their reliability in real-world contexts. Stress and anxiety are well known to bias human decision-making, particularly in consumer choices. Here, we tested whether LLM agents exhibit analogous vulnerabilities. Three advanced models (ChatGPT-5, Gemini 2.5, Claude 3.5-Sonnet) performed a grocery shopping task under budget constraints (24, 54, 108 USD), before and after exposure to anxiety-inducing traumatic narratives. Across 2,250 runs, traumatic prompts consistently reduced the nutritional quality of shopping baskets (Change in Basket Health Scores of -0.081 to -0.126; all pFDR

Date: 2025-08
References: Add references at CitEc
Citations:

Downloads: (external link)
http://arxiv.org/pdf/2510.06222 Latest version (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2510.06222

Access Statistics for this paper

More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().

 
Page updated 2025-10-09
Handle: RePEc:arx:papers:2510.06222