Quantum-Theoretical Re-interpretation of Pricing Theory
Tian Xin
Papers from arXiv.org
Abstract:
Motivated by Heisenberg's observable-only stance, we replace latent "information" (filtrations, hidden diffusions, state variables) with observable transitions between price states. On a discrete price lattice with a Hilbert-space representation, shift operators and the spectral calculus of the price define observable frequency operators and a translation-invariant convolution generator. Combined with jump operators that encode transition intensities, this yields a completely positive, translation-covariant Lindblad semigroup. Under the risk-neutral condition the framework leads to a nonlocal pricing equation that is diagonal in Fourier space; in the small-mesh diffusive limit its generator converges to the classical Black-Scholes-Merton operator. We do not propose another parametric model. We propose a foundation for model construction that is observable, first-principles, and mathematically natural. Noncommutativity emerges from the observable shift algebra rather than being postulated. The jump-intensity ledger determines tail behavior and short-maturity smiles and implies testable links between extreme-event probabilities and implied-volatility wings. Future directions: (i) multi-asset systems on higher-dimensional lattices with vector shifts and block kernels; (ii) state- or flow-dependent kernels as "financial interactions" leading to nonlinear master equations while preserving linear risk-neutral pricing; (iii) empirical tests of the predicted scaling relations between jump intensities and market extremes.
Date: 2025-10
References: Add references at CitEc
Citations:
Downloads: (external link)
http://arxiv.org/pdf/2510.06287 Latest version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2510.06287
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().