EconPapers    
Economics at your fingertips  
 

Bayesian Portfolio Optimization by Predictive Synthesis

Masahiro Kato, Kentaro Baba, Hibiki Kaibuchi and Ryo Inokuchi

Papers from arXiv.org

Abstract: Portfolio optimization is a critical task in investment. Most existing portfolio optimization methods require information on the distribution of returns of the assets that make up the portfolio. However, such distribution information is usually unknown to investors. Various methods have been proposed to estimate distribution information, but their accuracy greatly depends on the uncertainty of the financial markets. Due to this uncertainty, a model that could well predict the distribution information at one point in time may perform less accurately compared to another model at a different time. To solve this problem, we investigate a method for portfolio optimization based on Bayesian predictive synthesis (BPS), one of the Bayesian ensemble methods for meta-learning. We assume that investors have access to multiple asset return prediction models. By using BPS with dynamic linear models to combine these predictions, we can obtain a Bayesian predictive posterior about the mean rewards of assets that accommodate the uncertainty of the financial markets. In this study, we examine how to construct mean-variance portfolios and quantile-based portfolios based on the predicted distribution information.

Date: 2025-10
References: Add references at CitEc
Citations:

Downloads: (external link)
http://arxiv.org/pdf/2510.07180 Latest version (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2510.07180

Access Statistics for this paper

More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().

 
Page updated 2025-10-09
Handle: RePEc:arx:papers:2510.07180