Lifted Heston Model: Efficient Monte Carlo Simulation with Large Time Steps
Nicola F. Zaugg and
Lech A. Grzelak
Papers from arXiv.org
Abstract:
The lifted Heston model is a stochastic volatility model emerging as a Markovian lift of the rough Heston model and the class of rough volatility processes. The model encodes the path dependency of volatility on a set of N square-root state processes driven by a common stochastic factor. While the system is Markovian, simulation schemes such as the Euler scheme exist, but require a small-step, multidimensional simulation of the state processes and are therefore numerically challenging. We propose a novel simulation scheme of the class of implicit integrated variance schemes. The method exploits the near-linear nature between the stochastic driver and the conditional integrated variance process, which allows for a consistent and efficient sampling of the integrated variance process using an inverse Gaussian distribution. Since we establish the linear relation using a linear projection in the L2 space, the method is optimal in an L2 sense and offers a significant efficiency gain over similar methods. We demonstrate that our scheme achieves near-exact accuracy even for coarse discretizations and allows for efficient pricing of volatility options with large time steps.
Date: 2025-10
References: Add references at CitEc
Citations:
Downloads: (external link)
http://arxiv.org/pdf/2510.08805 Latest version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2510.08805
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().