EconPapers    
Economics at your fingertips  
 

Robust Exploratory Stopping under Ambiguity in Reinforcement Learning

Junyan Ye, Hoi Ying Wong and Kyunghyun Park

Papers from arXiv.org

Abstract: We propose and analyze a continuous-time robust reinforcement learning framework for optimal stopping problems under ambiguity. In this framework, an agent chooses a stopping rule motivated by two objectives: robust decision-making under ambiguity and learning about the unknown environment. Here, ambiguity refers to considering multiple probability measures dominated by a reference measure, reflecting the agent's awareness that the reference measure representing her learned belief about the environment would be erroneous. Using the $g$-expectation framework, we reformulate an optimal stopping problem under ambiguity as an entropy-regularized optimal control problem under ambiguity, with Bernoulli distributed controls to incorporate exploration into the stopping rules. We then derive the optimal Bernoulli distributed control characterized by backward stochastic differential equations. Moreover, we establish a policy iteration theorem and implement it as a reinforcement learning algorithm. Numerical experiments demonstrate the convergence and robustness of the proposed algorithm across different levels of ambiguity and exploration.

Date: 2025-10
New Economics Papers: this item is included in nep-cmp
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://arxiv.org/pdf/2510.10260 Latest version (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2510.10260

Access Statistics for this paper

More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().

 
Page updated 2025-12-25
Handle: RePEc:arx:papers:2510.10260