EconPapers    
Economics at your fingertips  
 

Optimal break tests for large linear time series models

Abhimanyu Gupta and Myung Hwan Seo

Papers from arXiv.org

Abstract: We develop a class of optimal tests for a structural break occurring at an unknown date in infinite and growing-order time series regression models, such as AR($\infty$), linear regression with increasingly many covariates, and nonparametric regression. Under an auxiliary i.i.d. Gaussian error assumption, we derive an average power optimal test, establishing a growing-dimensional analog of the exponential tests of Andrews and Ploberger (1994) to handle identification failure under the null hypothesis of no break. Relaxing the i.i.d. Gaussian assumption to a more general dependence structure, we establish a functional central limit theorem for the underlying stochastic processes, which features an extra high-order serial dependence term due to the growing dimension. We robustify our test both against this term and finite sample bias and illustrate its excellent performance and practical relevance in a Monte Carlo study and a real data empirical example.

Date: 2025-10
New Economics Papers: this item is included in nep-ecm and nep-ets
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://arxiv.org/pdf/2510.12262 Latest version (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2510.12262

Access Statistics for this paper

More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().

 
Page updated 2025-11-15
Handle: RePEc:arx:papers:2510.12262