Toward Black Scholes for Prediction Markets: A Unified Kernel and Market Maker's Handbook
Shaw Dalen
Papers from arXiv.org
Abstract:
Prediction markets, such as Polymarket, aggregate dispersed information into tradable probabilities, but they still lack a unifying stochastic kernel comparable to the one options gained from Black-Scholes. As these markets scale with institutional participation, exchange integrations, and higher volumes around elections and macro prints, market makers face belief volatility, jump, and cross-event risks without standardized tools for quoting or hedging. We propose such a foundation: a logit jump-diffusion with risk-neutral drift that treats the traded probability p_t as a Q-martingale and exposes belief volatility, jump intensity, and dependence as quotable risk factors. On top, we build a calibration pipeline that filters microstructure noise, separates diffusion from jumps using expectation-maximization, enforces the risk-neutral drift, and yields a stable belief-volatility surface. We then define a coherent derivative layer (variance, correlation, corridor, and first-passage instruments) analogous to volatility and correlation products in option markets. In controlled experiments on synthetic risk-neutral paths and real event data, the model reduces short-horizon belief-variance forecast error relative to diffusion-only and probability-space baselines, supporting both causal calibration and economic interpretability. Conceptually, the logit jump-diffusion kernel supplies an implied-volatility analogue for prediction markets: a tractable, tradable language for quoting, hedging, and transferring belief risk across venues such as Polymarket.
Date: 2025-10
New Economics Papers: this item is included in nep-for
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://arxiv.org/pdf/2510.15205 Latest version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2510.15205
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().