An Efficient Calibration Framework for Volatility Derivatives under Rough Volatility with Jumps
Keyuan Wu,
Tenghan Zhong and
Yuxuan Ouyang
Papers from arXiv.org
Abstract:
We present a fast and robust calibration method for stochastic volatility models that admit Fourier-analytic transform-based pricing via characteristic functions. The design is structure-preserving: we keep the original pricing transform and (i) split the pricing formula into data-independent inte- grals and a market-dependent remainder; (ii) precompute those data-independent integrals with GPU acceleration; and (iii) approximate only the remaining, market-dependent pricing map with a small neural network. We instantiate the workflow on a rough volatility model with tempered-stable jumps tailored to power-type volatility derivatives and calibrate it to VIX options with a global-to-local search. We verify that a pure-jump rough volatility model adequately captures the VIX dynamics, consistent with prior empirical findings, and demonstrate that our calibration method achieves high accuracy and speed.
Date: 2025-10
New Economics Papers: this item is included in nep-ets
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://arxiv.org/pdf/2510.19126 Latest version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2510.19126
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().