EconPapers    
Economics at your fingertips  
 

Bilevel Programming Problems: A view through Set-valued Optimization

Kuntal Som, Thirumulanathan D and Joydeep Dutta

Papers from arXiv.org

Abstract: Bilevel programming is one of the very active areas of research with many real-life applications in economics and engineering. Bilevel problems are hierarchical problems consisting of lower-level and upper-level problems, respectively. The leader or the decision-maker for the upper-level problem decides first, and then the follower or the lower-level decision-maker chooses his/her strategy. In the case of multiple lower-level solutions, the bilevel problems are not well defined, and there are many ways to handle such a situation. One standard way is to put restrictions on the lower level problems (like strict convexity) so that nonuniqueness does not arise. However, those restrictions are not viable in many situations. Therefore, there are two standard formulations, called pessimistic formulations and optimistic formulations of the upper-level problem. A set-valued formulation has been proposed and has been studied in the literature. However, the study is limited to the continuous set-up with the assumption of value attainment, and the general case has not been considered. In this paper, we focus on the general case and study the connection among various notions of solution. Our main findings suggest that the set-valued formulation may not hold any bigger advantage than the existing optimistic and pessimistic formulation.

Date: 2025-10
New Economics Papers: this item is included in nep-mac
References: View references in EconPapers View complete reference list from CitEc
Citations:

Published in Ann Oper Res (2025)

Downloads: (external link)
http://arxiv.org/pdf/2510.20631 Latest version (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2510.20631

Access Statistics for this paper

More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().

 
Page updated 2025-11-15
Handle: RePEc:arx:papers:2510.20631