EconPapers    
Economics at your fingertips  
 

Adaptive Multilevel Splitting: First Application to Rare-Event Derivative Pricing

Riccardo Gozzo

Papers from arXiv.org

Abstract: This work investigates the computational burden of pricing binary options in rare event regimes and introduces an adaptation of the adaptive multilevel splitting (AMS) method for financial derivatives. Standard Monte Carlo becomes inefficient for deep out-of-the-money binaries due to discontinuous payoffs and extremely small exercise probabilities, requiring prohibitively large sample sizes for accurate estimation. The proposed AMS framework reformulates the rare-event problem as a sequence of conditional events and is applied under both Black-Scholes and Heston dynamics. Numerical experiments cover European, Asian, and up-and-in barrier digital options, together with a multidimensional digital payoff designed as a stress test. Across all contracts, AMS achieves substantial gains, reaching up to 200-fold improvements over standard Monte Carlo, while preserving unbiasedness and showing robust performance with respect to the choice of importance function. To the best of our knowledge, this is the first application of AMS to derivative pricing. An open-source Rcpp implementation is provided, supporting multiple discretisation schemes and alternative importance functions.

Date: 2025-10, Revised 2025-11
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://arxiv.org/pdf/2510.23461 Latest version (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2510.23461

Access Statistics for this paper

More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().

 
Page updated 2025-12-20
Handle: RePEc:arx:papers:2510.23461