Extended HJB Equation for Mean-Variance Stopping Problem: Vanishing Regularization Method
Yuchao Dong and
Harry Zheng
Papers from arXiv.org
Abstract:
This paper studies the time-inconsistent MV optimal stopping problem via a game-theoretic approach to find equilibrium strategies. To overcome the mathematical intractability of direct equilibrium analysis, we propose a vanishing regularization method: first, we introduce an entropy-based regularization term to the MV objective, modeling mixed-strategy stopping times using the intensity of a Cox process. For this regularized problem, we derive a coupled extended Hamilton-Jacobi-Bellman (HJB) equation system, prove a verification theorem linking its solutions to equilibrium intensities, and establish the existence of classical solutions for small time horizons via a contraction mapping argument. By letting the regularization term tend to zero, we formally recover a system of parabolic variational inequalities that characterizes equilibrium stopping times for the original MV problem. This system includes an additional key quadratic term--a distinction from classical optimal stopping, where stopping conditions depend only on comparing the value function to the instantaneous reward.
Date: 2025-10
New Economics Papers: this item is included in nep-gth
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://arxiv.org/pdf/2510.24128 Latest version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2510.24128
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().