Concentration Inequalities for Suprema of Empirical Processes with Dependent Data via Generic Chaining with Applications to Statistical Learning
Chiara Amorino,
Christian Brownlees and
Ankita Ghosh
Papers from arXiv.org
Abstract:
This paper develops a general concentration inequality for the suprema of empirical processes with dependent data. The concentration inequality is obtained by combining generic chaining with a coupling-based strategy. Our framework accommodates high-dimensional and heavy-tailed (sub-Weibull) data. We demonstrate the usefulness of our result by deriving non-asymptotic predictive performance guarantees for empirical risk minimization in regression problems with dependent data. In particular, we establish an oracle inequality for a broad class of nonlinear regression models and, as a special case, a single-layer neural network model. Our results show that empirical risk minimzaton with dependent data attains a prediction accuracy comparable to that in the i.i.d. setting for a wide range of nonlinear regression models.
Date: 2025-11
New Economics Papers: this item is included in nep-ecm
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://arxiv.org/pdf/2511.00597 Latest version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2511.00597
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().