The Shape of Markets: Machine learning modeling and Prediction Using 2-Manifold Geometries
Panagiotis G. Papaioannou and
Athanassios N. Yannacopoulos
Papers from arXiv.org
Abstract:
We introduce a Geometry Informed Model for financial forecasting by embedding high dimensional market data onto constant curvature 2manifolds. Guided by the uniformization theorem, we model market dynamics as Brownian motion on spherical S2, Euclidean R2, and hyperbolic H2 geometries. We further include the torus T, a compact, flat manifold admissible as a quotient space of the Euclidean plane anticipating its relevance for capturing cyclical dynamics. Manifold learning techniques infer the latent curvature from financial data, revealing the torus as the best performing geometry. We interpret this result through a macroeconomic lens, the torus circular dimensions align with endogenous cycles in output, interest rates, and inflation described by IS LM theory. Our findings demonstrate the value of integrating differential geometry with data-driven inference for financial modeling.
Date: 2025-11, Revised 2025-11
New Economics Papers: this item is included in nep-cmp
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://arxiv.org/pdf/2511.05030 Latest version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2511.05030
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().