EconPapers    
Economics at your fingertips  
 

Explainable Federated Learning for U.S. State-Level Financial Distress Modeling

Lorenzo Carta, Fernando Spadea and Oshani Seneviratne

Papers from arXiv.org

Abstract: We present the first application of federated learning (FL) to the U.S. National Financial Capability Study, introducing an interpretable framework for predicting consumer financial distress across all 50 states and the District of Columbia without centralizing sensitive data. Our cross-silo FL setup treats each state as a distinct data silo, simulating real-world governance in nationwide financial systems. Unlike prior work, our approach integrates two complementary explainable AI techniques to identify both global (nationwide) and local (state-specific) predictors of financial hardship, such as contact from debt collection agencies. We develop a machine learning model specifically suited for highly categorical, imbalanced survey data. This work delivers a scalable, regulation-compliant blueprint for early warning systems in finance, demonstrating how FL can power socially responsible AI applications in consumer credit risk and financial inclusion.

Date: 2025-10
New Economics Papers: this item is included in nep-fle
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://arxiv.org/pdf/2511.08588 Latest version (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2511.08588

Access Statistics for this paper

More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().

 
Page updated 2025-12-20
Handle: RePEc:arx:papers:2511.08588