Reinforcement Learning for Portfolio Optimization with a Financial Goal and Defined Time Horizons
Fermat Leukam,
Rock Stephane Koffi and
Prudence Djagba
Papers from arXiv.org
Abstract:
This research proposes an enhancement to the innovative portfolio optimization approach using the G-Learning algorithm, combined with parametric optimization via the GIRL algorithm (G-learning approach to the setting of Inverse Reinforcement Learning) as presented by. The goal is to maximize portfolio value by a target date while minimizing the investor's periodic contributions. Our model operates in a highly volatile market with a well-diversified portfolio, ensuring a low-risk level for the investor, and leverages reinforcement learning to dynamically adjust portfolio positions over time. Results show that we improved the Sharpe Ratio from 0.42, as suggested by recent studies using the same approach, to a value of 0.483 a notable achievement in highly volatile markets with diversified portfolios. The comparison between G-Learning and GIRL reveals that while GIRL optimizes the reward function parameters (e.g., lambda = 0.0012 compared to 0.002), its impact on portfolio performance remains marginal. This suggests that reinforcement learning methods, like G-Learning, already enable robust optimization. This research contributes to the growing development of reinforcement learning applications in financial decision-making, demonstrating that probabilistic learning algorithms can effectively align portfolio management strategies with investor needs.
Date: 2025-11
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://arxiv.org/pdf/2511.18076 Latest version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2511.18076
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().