When Should Neural Data Inform Welfare? A Critical Framework for Policy Uses of Neuroeconomics
Yiven and
Zhu
Additional contact information
Yiven: Louis
Papers from arXiv.org
Abstract:
Neuroeconomics promises to ground welfare analysis in neural and computational evidence about how people value outcomes, learn from experience and exercise self-control. At the same time, policy and commercial actors increasingly invoke neural data to justify paternalistic regulation, "brain-based" interventions and new welfare measures. This paper asks under what conditions neural data can legitimately inform welfare judgements for policy rather than merely describing behaviour. I develop a non-empirical, model-based framework that links three levels: neural signals, computational decision models and normative welfare criteria. Within an actor-critic reinforcement-learning model, I formalise the inference path from neural activity to latent values and prediction errors and then to welfare claims. I show that neural evidence constrains welfare judgements only when the neural-computational mapping is well validated, the decision model identifies "true" interests versus context-dependent mistakes, and the welfare criterion is explicitly specified and defended. Applying the framework to addiction, neuromarketing and environmental policy, I derive a Neuroeconomic Welfare Inference Checklist for regulators and for designers of NeuroAI systems. The analysis treats brains and artificial agents as value-learning systems while showing that internal reward signals, whether biological or artificial, are computational quantities and cannot be treated as welfare measures without an explicit normative model.
Date: 2025-11
New Economics Papers: this item is included in nep-inv
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://arxiv.org/pdf/2511.19548 Latest version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2511.19548
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().