Solving Heterogeneous Agent Models with Physics-informed Neural Networks
Marta Grzeskiewicz
Papers from arXiv.org
Abstract:
Understanding household behaviour is essential for modelling macroeconomic dynamics and designing effective policy. While heterogeneous agent models offer a more realistic alternative to representative agent frameworks, their implementation poses significant computational challenges, particularly in continuous time. The Aiyagari-Bewley-Huggett (ABH) framework, recast as a system of partial differential equations, typically relies on grid-based solvers that suffer from the curse of dimensionality, high computational cost, and numerical inaccuracies. This paper introduces the ABH-PINN solver, an approach based on Physics-Informed Neural Networks (PINNs), which embeds the Hamilton-Jacobi-Bellman and Kolmogorov Forward equations directly into the neural network training objective. By replacing grid-based approximation with mesh-free, differentiable function learning, the ABH-PINN solver benefits from the advantages of PINNs of improved scalability, smoother solutions, and computational efficiency. Preliminary results show that the PINN-based approach is able to obtain economically valid results matching the established finite-difference solvers.
Date: 2025-11
New Economics Papers: this item is included in nep-dge
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://arxiv.org/pdf/2511.20283 Latest version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2511.20283
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().