EconPapers    
Economics at your fingertips  
 

Estimation in high-dimensional linear regression: Post-Double-Autometrics as an alternative to Post-Double-Lasso

Sullivan Hu\'e, S\'ebastien Laurent, Ulrich Aiounou and Emmanuel Flachaire

Papers from arXiv.org

Abstract: Post-Double-Lasso is becoming the most popular method for estimating linear regression models with many covariates when the purpose is to obtain an accurate estimate of a parameter of interest, such as an average treatment effect. However, this method can suffer from substantial omitted variable bias in finite sample. We propose a new method called Post-Double-Autometrics, which is based on Autometrics, and show that this method outperforms Post-Double-Lasso. Its use in a standard application of economic growth sheds new light on the hypothesis of convergence from poor to rich economies.

Date: 2025-11
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://arxiv.org/pdf/2511.21257 Latest version (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2511.21257

Access Statistics for this paper

More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().

 
Page updated 2025-12-20
Handle: RePEc:arx:papers:2511.21257