EconPapers    
Economics at your fingertips  
 

Tacit Bidder-Side Collusion: Artificial Intelligence in Dynamic Auctions

Sriram Tolety

Papers from arXiv.org

Abstract: We study whether large language models acting as autonomous bidders can tacitly collude by coordinating when to accept platform posted payouts in repeated Dutch auctions, without any communication. We present a minimal repeated auction model that yields a simple incentive compatibility condition and a closed form threshold for sustainable collusion for subgame-perfect Nash equilibria. In controlled simulations with multiple language models, we observe systematic supra-competitive prices in small auction settings and a return to competitive behavior as the number of bidders in the market increases, consistent with the theoretical model. We also find LLMs use various mechanisms to facilitate tacit coordination, such as focal point acceptance timing versus patient strategies that track the theoretical incentives. The results provide, to our knowledge, the first evidence of bidder side tacit collusion by LLMs and show that market structure levers can be more effective than capability limits for mitigation.

Date: 2025-11
New Economics Papers: this item is included in nep-ain, nep-com, nep-des and nep-mic
References: Add references at CitEc
Citations:

Downloads: (external link)
http://arxiv.org/pdf/2511.21802 Latest version (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2511.21802

Access Statistics for this paper

More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().

 
Page updated 2025-12-16
Handle: RePEc:arx:papers:2511.21802