Improved Inference for Nonparametric Regression
Giuseppe Cavaliere,
S\'ilvia Gon\c{c}alves,
Morten Nielsen and
Edoardo Zanelli
Papers from arXiv.org
Abstract:
Nonparametric regression estimators, including those employed in regression-discontinuity designs (RDD), are central to the economist's toolbox. Their application, however, is complicated by the presence of asymptotic bias, which undermines coverage accuracy of conventional confidence intervals. Extant solutions to the problem include debiasing methods, such as the widely applied robust bias-corrected (RBC) confidence interval of Calonico et al. (2014, 2018). We show that this interval is equivalent to a prepivoted interval based on an invalid residual-based bootstrap method. Specifically, prepivoting performs an implicit bias correction while adjusting the nonparametric regression estimator's standard error to account for the additional uncertainty introduced by debiasing. This idea can also be applied to other bootstrap schemes, leading to new implicit bias corrections and corresponding standard error adjustments. We propose a prepivoted interval based on a bootstrap that generates observations from nonparametric regression estimates at each regressor value and show how it can be implemented as an RBC-type interval without the need for resampling. Importantly, we show that the new interval is shorter than the existing RBC interval. For example, with the Epanechnikov kernel, the length is reduced by 17%, while maintaining accurate coverage probability. This result holds irrespectively of: (a) the evaluation point being in the interior or on the boundary; (b) the use of a 'small' or 'large' bandwidths; (c) the distribution of the regressor and the error term.
Date: 2025-11
New Economics Papers: this item is included in nep-ecm
References: Add references at CitEc
Citations:
Downloads: (external link)
http://arxiv.org/pdf/2512.00566 Latest version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2512.00566
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().