EconPapers    
Economics at your fingertips  
 

Opening the Black Box: Nowcasting Singapore's GDP Growth and its Explainability

Luca Attolico

Papers from arXiv.org

Abstract: Timely assessment of current conditions is essential especially for small, open economies such as Singapore, where external shocks transmit rapidly to domestic activity. We develop a real-time nowcasting framework for quarterly GDP growth using a high-dimensional panel of approximately 70 indicators, encompassing economic and financial indicators over 1990Q1-2023Q2. The analysis covers penalized regressions, dimensionality-reduction methods, ensemble learning algorithms, and neural architectures, benchmarked against a Random Walk, an AR(3), and a Dynamic Factor Model. The pipeline preserves temporal ordering through an expanding-window walk-forward design with Bayesian hyperparameter optimization, and uses moving block-bootstrap procedures both to construct prediction intervals and to obtain confidence bands for feature-importance measures. It adopts model-specific and XAI-based explainability tools. A Model Confidence Set procedure identifies statistically superior learners, which are then combined through simple, weighted, and exponentially weighted schemes; the resulting time-varying weights provide an interpretable representation of model contributions. Predictive ability is assessed via Giacomini-White tests. Empirical results show that penalized regressions, dimensionality-reduction models, and GRU networks consistently outperform all benchmarks, with RMSFE reductions of roughly 40-60%; aggregation delivers further gains. Feature-attribution methods highlight industrial production, external trade, and labor-market indicators as dominant drivers of Singapore's short-run growth dynamics.

Date: 2025-12
References: Add references at CitEc
Citations:

Downloads: (external link)
http://arxiv.org/pdf/2512.02092 Latest version (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2512.02092

Access Statistics for this paper

More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().

 
Page updated 2025-12-03
Handle: RePEc:arx:papers:2512.02092