EconPapers    
Economics at your fingertips  
 

Scaling Laws for Economic Productivity: Experimental Evidence in LLM-Assisted Consulting, Data Analyst, and Management Tasks

Ali Merali

Papers from arXiv.org

Abstract: This paper derives `Scaling Laws for Economic Impacts' -- empirical relationships between the training compute of Large Language Models (LLMs) and professional productivity. In a preregistered experiment, over 500 consultants, data analysts, and managers completed professional tasks using one of 13 LLMs. We find that each year of AI model progress reduced task time by 8%, with 56% of gains driven by increased compute and 44% by algorithmic progress. However, productivity gains were significantly larger for non-agentic analytical tasks compared to agentic workflows requiring tool use. These findings suggest continued model scaling could boost U.S. productivity by approximately 20% over the next decade.

Date: 2025-12
References: Add references at CitEc
Citations:

Downloads: (external link)
http://arxiv.org/pdf/2512.21316 Latest version (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2512.21316

Access Statistics for this paper

More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().

 
Page updated 2025-12-25
Handle: RePEc:arx:papers:2512.21316