Investigating Conditional Restricted Boltzmann Machines in Regime Detection
Siddhartha Srinivas Rentala
Papers from arXiv.org
Abstract:
This study investigates the efficacy of Conditional Restricted Boltzmann Machines (CRBMs) for modeling high-dimensional financial time series and detecting systemic risk regimes. We extend the classical application of static Restricted Boltzmann Machines (RBMs) by incorporating autoregressive conditioning and utilizing Persistent Contrastive Divergence (PCD) to incorporate complex temporal dependency structures. Comparing a discrete Bernoulli-Bernoulli architecture against a continuous Gaussian-Bernoulli variant across a multi-asset dataset spanning 2013-2025, we observe a dichotomy between generative fidelity and regime detection. While the Gaussian CRBM successfully preserves static asset correlations, it exhibits limitations in generating long-range volatility clustering. Thus, we analyze the free energy as a relative negative log-likelihood (surprisal) under a fixed, trained model. We demonstrate that the model's free energy serves as a robust, regime stability metric. By decomposing the free energy into quadratic (magnitude) and structural (correlation) components, we show that the model can distinguish between pure magnitude shocks and market regimes. Our findings suggest that the CRBM offers a valuable, interpretable diagnostic tool for monitoring systemic risk, providing a supplemental metric to implied volatility metrics like the VIX.
Date: 2025-12, Revised 2025-12
New Economics Papers: this item is included in nep-inv
References: Add references at CitEc
Citations:
Downloads: (external link)
http://arxiv.org/pdf/2512.21823 Latest version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2512.21823
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().