Order-Constrained Spectral Causality in Multivariate Time Series
Alejandro Rodriguez Dominguez
Papers from arXiv.org
Abstract:
We introduce an operator-theoretic framework for causal analysis in multivariate time series based on order-constrained spectral non-invariance. Directional influence is defined as sensitivity of second-order dependence operators to admissible, order-preserving temporal deformations of a designated source component, yielding an intrinsically multivariate causal notion summarized through orthogonally invariant spectral functionals. Under linear Gaussian assumptions, the criterion coincides with linear Granger causality, while beyond this regime it captures collective and nonlinear directional dependence not reflected in pairwise predictability. We establish existence, uniform consistency, and valid inference for the resulting non-smooth supremum--infimum statistics using shift-based randomization that exploits order-induced group invariance, yielding finite-sample exactness under exact invariance and asymptotic validity under weak dependence without parametric assumptions. Simulations demonstrate correct size and strong power against distributed and bulk-dominated alternatives, including nonlinear dependence missed by linear Granger tests with appropriate feature embeddings. An empirical application to a high-dimensional panel of daily financial return series spanning major asset classes illustrates system-level causal monitoring in practice. Directional organization is episodic and stress-dependent, causal propagation strengthens while remaining multi-channel, dominant causal hubs reallocate rapidly, and statistically robust transmission channels are sparse and horizon-heterogeneous even when aggregate lead--lag asymmetry is weak. The framework provides a scalable and interpretable complement to correlation-, factor-, and pairwise Granger-style analyses for complex systems.
Date: 2026-01
References: Add references at CitEc
Citations:
Downloads: (external link)
http://arxiv.org/pdf/2601.01216 Latest version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2601.01216
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().