Governance of Technological Transition: A Predator-Prey Analysis of AI Capital in China's Economy and Its Policy Implications
Kunpeng Wang and
Jiahui Hu
Papers from arXiv.org
Abstract:
The rapid integration of Artificial Intelligence (AI) into China's economy presents a classic governance challenge: how to harness its growth potential while managing its disruptive effects on traditional capital and labor markets. This study addresses this policy dilemma by modeling the dynamic interactions between AI capital, physical capital, and labor within a Lotka-Volterra predator-prey framework. Using annual Chinese data (2016-2023), we quantify the interaction strengths, identify stable equilibria, and perform a global sensitivity analysis. Our results reveal a consistent pattern where AI capital acts as the 'prey', stimulating both physical capital accumulation and labor compensation (wage bill), while facing only weak constraining feedback. The equilibrium points are stable nodes, indicating a policy-mediated convergence path rather than volatile cycles. Critically, the sensitivity analysis shows that the labor market equilibrium is overwhelmingly driven by AI-related parameters, whereas the physical capital equilibrium is also influenced by its own saturation dynamics. These findings provide a systemic, quantitative basis for policymakers: (1) to calibrate AI promotion policies by recognizing the asymmetric leverage points in capital vs. labor markets; (2) to anticipate and mitigate structural rigidities that may arise from current regulatory settings; and (3) to prioritize interventions that foster complementary growth between AI and traditional economic structures while ensuring broad-base distribution of technological gains.
Date: 2026-01
References: Add references at CitEc
Citations:
Downloads: (external link)
http://arxiv.org/pdf/2601.03547 Latest version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2601.03547
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().