Uncovering Sparse Financial Networks with Information Criteria
Fu Ouyang,
Thomas T. Yang and
Wenying Yao
Papers from arXiv.org
Abstract:
Empirical measures of financial connectedness based on Forecast Error Variance Decompositions (FEVDs) often yield dense network structures that obscure true transmission channels and complicate the identification of systemic risk. This paper proposes a novel information-criterion-based approach to uncover sparse, economically meaningful financial networks. By reformulating FEVD-based connectedness as a regression problem, we develop a model selection framework that consistently recovers the active set of spillover channels. We extend this method to generalized FEVDs to accommodate correlated shocks and introduce a data-driven procedure for tuning the penalty parameter using pseudo-out-of-sample forecast performance. Monte Carlo simulations demonstrate the approach's effectiveness with finite samples and its robustness to approximately sparse networks and heavy-tailed errors. Applications to global stock markets, S&P 500 sectoral indices, and commodity futures highlight the prevalence of sparse networks in empirical settings.
Date: 2026-01
References: Add references at CitEc
Citations:
Downloads: (external link)
http://arxiv.org/pdf/2601.03598 Latest version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2601.03598
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().