EconPapers    
Economics at your fingertips  
 

Uncovering Sparse Financial Networks with Information Criteria

Fu Ouyang, Thomas T. Yang and Wenying Yao

Papers from arXiv.org

Abstract: Empirical measures of financial connectedness based on Forecast Error Variance Decompositions (FEVDs) often yield dense network structures that obscure true transmission channels and complicate the identification of systemic risk. This paper proposes a novel information-criterion-based approach to uncover sparse, economically meaningful financial networks. By reformulating FEVD-based connectedness as a regression problem, we develop a model selection framework that consistently recovers the active set of spillover channels. We extend this method to generalized FEVDs to accommodate correlated shocks and introduce a data-driven procedure for tuning the penalty parameter using pseudo-out-of-sample forecast performance. Monte Carlo simulations demonstrate the approach's effectiveness with finite samples and its robustness to approximately sparse networks and heavy-tailed errors. Applications to global stock markets, S&P 500 sectoral indices, and commodity futures highlight the prevalence of sparse networks in empirical settings.

Date: 2026-01
References: Add references at CitEc
Citations:

Downloads: (external link)
http://arxiv.org/pdf/2601.03598 Latest version (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2601.03598

Access Statistics for this paper

More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().

 
Page updated 2026-01-08
Handle: RePEc:arx:papers:2601.03598