From Unstructured Data to Demand Counterfactuals: Theory and Practice
Timothy Christensen and
Giovanni Compiani
Papers from arXiv.org
Abstract:
Empirical models of demand for differentiated products rely on low-dimensional product representations to capture substitution patterns. These representations are increasingly proxied by applying ML methods to high-dimensional, unstructured data, including product descriptions and images. When proxies fail to capture the true dimensions of differentiation that drive substitution, standard workflows will deliver biased counterfactuals and invalid inference. We develop a practical toolkit that corrects this bias and ensures valid inference for a broad class of counterfactuals. Our approach applies to market-level and/or individual data, requires minimal additional computation, is efficient, delivers simple formulas for standard errors, and accommodates data-dependent proxies, including embeddings from fine-tuned ML models. It can also be used with standard quantitative attributes when mismeasurement is a concern. In addition, we propose diagnostics to assess the adequacy of the proxy construction and dimension. The approach yields meaningful improvements in predicting counterfactual substitution in both simulations and an empirical application.
Date: 2026-01
References: Add references at CitEc
Citations:
Downloads: (external link)
http://arxiv.org/pdf/2601.05374 Latest version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2601.05374
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().