EconPapers    
Economics at your fingertips  
 

Knowledge-Integrated Representation Learning for Crypto Anomaly Detection under Extreme Label Scarcity; Relational Domain-Logic Integration with Retrieval-Grounded Context and Path-Level Explanations

Gyuyeon Na, Minjung Park, Soyoun Kim, Jungbin Shin and Sangmi Chai

Papers from arXiv.org

Abstract: Detecting anomalous trajectories in decentralized crypto networks is fundamentally challenged by extreme label scarcity and the adaptive evasion strategies of illicit actors. While Graph Neural Networks (GNNs) effectively capture local structural patterns, they struggle to internalize multi hop, logic driven motifs such as fund dispersal and layering that characterize sophisticated money laundering, limiting their forensic accountability under regulations like the FATF Travel Rule. To address this limitation, we propose Relational Domain Logic Integration (RDLI), a framework that embeds expert derived heuristics as differentiable, logic aware latent signals within representation learning. Unlike static rule based approaches, RDLI enables the detection of complex transactional flows that evade standard message passing. To further account for market volatility, we incorporate a Retrieval Grounded Context (RGC) module that conditions anomaly scoring on regulatory and macroeconomic context, mitigating false positives caused by benign regime shifts. Under extreme label scarcity (0.01%), RDLI outperforms state of the art GNN baselines by 28.9% in F1 score. A micro expert user study further confirms that RDLI path level explanations significantly improve trustworthiness, perceived usefulness, and clarity compared to existing methods, highlighting the importance of integrating domain logic with contextual grounding for both accuracy and explainability.

Date: 2026-01
References: Add references at CitEc
Citations:

Downloads: (external link)
http://arxiv.org/pdf/2601.12839 Latest version (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2601.12839

Access Statistics for this paper

More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().

 
Page updated 2026-01-21
Handle: RePEc:arx:papers:2601.12839