Learning Market Making with Closing Auctions
Julius Graf and
Thibaut Mastrolia
Papers from arXiv.org
Abstract:
In this work, we investigate the market-making problem on a trading session in which a continuous phase on a limit order book is followed by a closing auction. Whereas standard optimal market-making models typically rely on terminal inventory penalties to manage end-of-day risk, ignoring the significant liquidity events available in closing auctions, we propose a Deep Q-Learning framework that explicitly incorporates this mechanism. We introduce a market-making framework designed to explicitly anticipate the closing auction, continuously refining the projected clearing price as the trading session evolves. We develop a generative stochastic market model to simulate the trading session and to emulate the market. Our theoretical model and Deep Q-Learning method is applied on the generator in two settings: (1) when the mid price follows a rough Heston model with generative data from this stochastic model; and (2) when the mid price corresponds to historical data of assets from the S&P 500 index and the performance of our algorithm is compared with classical benchmarks from optimal market making.
Date: 2026-01
References: Add references at CitEc
Citations:
Downloads: (external link)
http://arxiv.org/pdf/2601.17247 Latest version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2601.17247
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().