AI Assisted Economics Measurement From Survey: Evidence from Public Employee Pension Choice
Tiancheng Wang and
Krishna Sharma
Papers from arXiv.org
Abstract:
We develop an iterative framework for economic measurement that leverages large language models to extract measurement structure directly from survey instruments. The approach maps survey items to a sparse distribution over latent constructs through what we term a soft mapping, aggregates harmonized responses into respondent level sub dimension scores, and disciplines the resulting taxonomy through out of sample incremental validity tests and discriminant validity diagnostics. The framework explicitly integrates iteration into the measurement construction process. Overlap and redundancy diagnostics trigger targeted taxonomy refinement and constrained remapping, ensuring that added measurement flexibility is retained only when it delivers stable out of sample performance gains. Applied to a large scale public employee retirement plan survey, the framework identifies which semantic components contain behavioral signal and clarifies the economic mechanisms, such as beliefs versus constraints, that matter for retirement choices. The methodology provides a portable measurement audit of survey instruments that can guide both empirical analysis and survey design.
Date: 2026-02
References: Add references at CitEc
Citations:
Downloads: (external link)
http://arxiv.org/pdf/2602.02604 Latest version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2602.02604
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().