Quantum Field Theory of Forward Rates with Stochastic Volatility
Belal E. Baaquie
Papers from arXiv.org
Abstract:
In a recent formulation of a quantum field theory of forward rates, the volatility of the forward rates was taken to be deterministic. The field theory of the forward rates is generalized to the case of stochastic volatility. Two cases are analyzed, firstly when volatility is taken to be a function of the forward rates, and secondly when volatility is taken to be an independent quantum field. Since volatiltiy is a positive valued quantum field, the full theory turns out to be an interacting nonlinear quantum field theory in two dimensions. The state space and Hamiltonian for the interacting theory are obtained, and shown to have a nontrivial structure due to the manifold moving with a constant velocity. The no arbitrage condition is reformulated in terms of the Hamiltonian of the system, and then exactly solved for the nonlinear interacting case.
Date: 2001-10
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://arxiv.org/pdf/cond-mat/0110506 Latest version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:cond-mat/0110506
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().