EconPapers    
Economics at your fingertips  
 

Expected Shortfall and Beyond

Dirk Tasche

Papers from arXiv.org

Abstract: Financial institutions have to allocate so-called "economic capital" in order to guarantee solvency to their clients and counter parties. Mathematically speaking, any methodology of allocating capital is a "risk measure", i.e. a function mapping random variables to the real numbers. Nowadays "value-at-risk", which is defined as a fixed level quantile of the random variable under consideration, is the most popular risk measure. Unfortunately, it fails to reward diversification, as it is not "subadditive". In the search for a suitable alternative to value-at-risk, "Expected Shortfall" (or "conditional value-at-risk" or "tail value-at-risk") has been characterized as the smallest "coherent" and "law invariant" risk measure to dominate value-at-risk. We discuss these and some other properties of Expected Shortfall as well as its generalization to a class of coherent risk measures which can incorporate higher moment effects. Moreover, we suggest a general method on how to attribute Expected Shortfall "risk contributions" to portfolio components. Key words: Expected Shortfall; Value-at-Risk; Spectral Risk Measure; coherence; risk contribution.

Date: 2002-03, Revised 2002-10
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (48)

Published in Journal of Banking and Finance 26(7), 1519-1533, 2002

Downloads: (external link)
http://arxiv.org/pdf/cond-mat/0203558 Latest version (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:cond-mat/0203558

Access Statistics for this paper

More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().

 
Page updated 2025-03-19
Handle: RePEc:arx:papers:cond-mat/0203558