Dynamics of Money and Income Distributions
Przemyslaw Repetowicz,
Stefan Hutzler and
Peter Richmond
Papers from arXiv.org
Abstract:
We study the model of interacting agents proposed by Chatterjee et al that allows agents to both save and exchange wealth. Closed equations for the wealth distribution are developed using a mean field approximation. We show that when all agents have the same fixed savings propensity, subject to certain well defined approximations defined in the text, these equations yield the conjecture proposed by Chatterjee for the form of the stationary agent wealth distribution. If the savings propensity for the equations is chosen according to some random distribution we show further that the wealth distribution for large values of wealth displays a Pareto like power law tail, ie P(w)\sim w^{1+a}. However the value of $a$ for the model is exactly 1. Exact numerical simulations for the model illustrate how, as the savings distribution function narrows to zero, the wealth distribution changes from a Pareto form to to an exponential function. Intermediate regions of wealth may be approximately described by a power law with $a>1$. However the value never reaches values of \~ 1.6-1.7 that characterise empirical wealth data. This conclusion is not changed if three body agent exchange processes are allowed. We conclude that other mechanisms are required if the model is to agree with empirical wealth data.
Date: 2004-07
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://arxiv.org/pdf/cond-mat/0407770 Latest version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:cond-mat/0407770
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().