EconPapers    
Economics at your fingertips  
 

Markov Processes, Hurst Exponents, and Nonlinear Diffusion Equations with application to finance

Kevin E. Bassler, Gemunu H. Gunaratne and Joseph L. McCauley

Papers from arXiv.org

Abstract: We show by explicit closed form calculations that a Hurst exponent H that is not 1/2 does not necessarily imply long time correlations like those found in fractional Brownian motion. We construct a large set of scaling solutions of Fokker-Planck partial differential equations where H is not 1/2. Thus Markov processes, which by construction have no long time correlations, can have H not equal to 1/2. If a Markov process scales with Hurst exponent H then it simply means that the process has nonstationary increments. For the scaling solutions, we show how to reduce the calculation of the probability density to a single integration once the diffusion coefficient D(x,t) is specified. As an example, we generate a class of student-t-like densities from the class of quadratic diffusion coefficients. Notably, the Tsallis density is one member of that large class. The Tsallis density is usually thought to result from a nonlinear diffusion equation, but instead we explicitly show that it follows from a Markov process generated by a linear Fokker-Planck equation, and therefore from a corresponding Langevin equation. Having a Tsallis density with H not equal to 1/2 therefore does not imply dynamics with correlated signals, e.g., like those of fractional Brownian motion. A short review of the requirements for fractional Brownian motion is given for clarity, and we explain why the usual simple argument that H unequal to 1/2 implies correlations fails for Markov processes with scaling solutions. Finally, we discuss the question of scaling of the full Green function g(x,t;x',t') of the Fokker-Planck pde.

Date: 2006-02
References: Add references at CitEc
Citations: View citations in EconPapers (25)

Downloads: (external link)
http://arxiv.org/pdf/cond-mat/0602316 Latest version (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:cond-mat/0602316

Access Statistics for this paper

More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().

 
Page updated 2025-03-19
Handle: RePEc:arx:papers:cond-mat/0602316