EconPapers    
Economics at your fingertips  
 

Revisiting the Black-Scholes equation

D. F. Wang
Additional contact information
D. F. Wang: Univ.of Waterloo and TD Bank

Papers from arXiv.org

Abstract: In common finance literature, Black-Scholes partial differential equation of option pricing is usually derived with no-arbitrage principle. Considering an asset market, Merton applied the Hamilton-Jacobi-Bellman techniques of his continuous-time consumption-portfolio problem, deriving general equilibrium relationships among the securities in the asset market. In special case where the interest rate is constant, he rederived the Black-Scholes partial differential equation from the general equilibrium asset market. In this work, I follow Cox-Ingersoll-Ross formulation to consider an economy which includes (1) uncertain production processes, and (2) the random technology change. Assuming a random production stochastic process of constant drift and variance, and assuming a random technology change to follow a log normal process, the equilibrium point of this economy will lead to the Black-Scholes partial differential equation for option pricing.

Date: 1998-05
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
http://arxiv.org/pdf/cond-mat/9805115 Latest version (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:cond-mat/9805115

Access Statistics for this paper

More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().

 
Page updated 2025-03-19
Handle: RePEc:arx:papers:cond-mat/9805115