EconPapers    
Economics at your fingertips  
 

Stochastic relaxational dynamics applied to finance: towards non-equilibrium option pricing theory

Matthias Otto
Additional contact information
Matthias Otto: Institute of Theoretical Physics, University of Goettingen, Germany

Papers from arXiv.org

Abstract: Non-equilibrium phenomena occur not only in physical world, but also in finance. In this work, stochastic relaxational dynamics (together with path integrals) is applied to option pricing theory. A recently proposed model (by Ilinski et al.) considers fluctuations around this equilibrium state by introducing a relaxational dynamics with random noise for intermediate deviations called ``virtual'' arbitrage returns. In this work, the model is incorporated within a martingale pricing method for derivatives on securities (e.g. stocks) in incomplete markets using a mapping to option pricing theory with stochastic interest rates. Using a famous result by Merton and with some help from the path integral method, exact pricing formulas for European call and put options under the influence of virtual arbitrage returns (or intermediate deviations from economic equilibrium) are derived where only the final integration over initial arbitrage returns needs to be performed numerically. This result is complemented by a discussion of the hedging strategy associated to a derivative, which replicates the final payoff but turns out to be not self-financing in the real world, but self-financing {\it when summed over the derivative's remaining life time}. Numerical examples are given which underline the fact that an additional positive risk premium (with respect to the Black-Scholes values) is found reflecting extra hedging costs due to intermediate deviations from economic equilibrium.

Date: 1999-06, Revised 1999-10
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://arxiv.org/pdf/cond-mat/9906196 Latest version (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:cond-mat/9906196

Access Statistics for this paper

More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().

 
Page updated 2025-03-19
Handle: RePEc:arx:papers:cond-mat/9906196