EconPapers    
Economics at your fingertips  
 

The Futility of Utility: how market dynamics marginalize Adam Smith

Joseph L. McCauley

Papers from arXiv.org

Abstract: Econometrics is based on the nonempiric notion of utility. Prices, dynamics, and market equilibria are supposed to be derived from utility. Utility is usually treated by economists as a price potential, other times utility rates are treated as Lagrangians. Assumptions of integrability of Lagrangians and dynamics are implicitly and uncritically made. In particular, economists assume that price is the gradient of utility in equilibrium, but I show that price as the gradient of utility is an integrability condition for the Hamiltonian dynamics of an optimization problem in econometric control theory. One consequence is that, in a nonintegrable dynamical system, price cannot be expressed as a function of demand or supply variables. Another consequence is that utility maximization does not describe equiulibrium. I point out that the maximization of Gibbs entropy would describe equilibrium, if equilibrium could be achieved, but equilibrium does not describe real markets. To emphasize the inconsistency of the economists' notion of 'equilibrium', I discuss both deterministic and stochastic dynamics of excess demand and observe that Adam Smith's stabilizing hand is not to be found either in deterministic or stochastic dynamical models of markets, nor in the observed motions of asset prices. Evidence for stability of prices of assets in free markets simply has not been found.

Date: 1999-11, Revised 2000-02
References: View complete reference list from CitEc
Citations: View citations in EconPapers (4)

Published in Physica A, 2000

Downloads: (external link)
http://arxiv.org/pdf/cond-mat/9911291 Latest version (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:cond-mat/9911291

Access Statistics for this paper

More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().

 
Page updated 2025-03-19
Handle: RePEc:arx:papers:cond-mat/9911291