Martingale selection problem and asset pricing in finite discrete time
Dmitry B. Rokhlin
Papers from arXiv.org
Abstract:
Given a set-valued stochastic process $(V_t)_{t=0}^T$, we say that the martingale selection problem is solvable if there exists an adapted sequence of selectors $\xi_t\in V_t$, admitting an equivalent martingale measure. The aim of this note is to underline the connection between this problem and the problems of asset pricing in general discrete-time market models with portfolio constraints and transaction costs. For the case of relatively open convex sets $V_t(\omega)$ we present effective necessary and sufficient conditions for the solvability of a suitably generalized martingale selection problem. We show that this result allows to obtain computationally feasible formulas for the price bounds of contingent claims. For the case of currency markets we also give a comment on the first fundamental theorem of asset pricing.
Date: 2006-02, Revised 2006-02
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://arxiv.org/pdf/math/0602594 Latest version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:math/0602594
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().