EconPapers    
Economics at your fingertips  
 

Pricing with coherent risk

Alexander S. Cherny

Papers from arXiv.org

Abstract: This paper deals with applications of coherent risk measures to pricing in incomplete markets. Namely, we study the No Good Deals pricing technique based on coherent risk. Two forms of this technique are presented: one defines a good deal as a trade with negative risk; the other one defines a good deal as a trade with unusually high RAROC. For each technique, the fundamental theorem of asset pricing and the form of the fair price interval are presented. The model considered includes static as well as dynamic models, models with an infinite number of assets, models with transaction costs, and models with portfolio constraints. In particular, we prove that in a model with proportional transaction costs the fair price interval converges to the fair price interval in a frictionless model as the coefficient of transaction costs tends to zero. Moreover, we study some problems in the ``pure'' theory of risk measures: we present a simple geometric solution of the capital allocation problem and apply it to define the coherent risk contribution. The mathematical tools employed are probability theory, functional analysis, and finite-dimensional convex analysis.

Date: 2006-05
References: View complete reference list from CitEc
Citations: View citations in EconPapers (7)

Downloads: (external link)
http://arxiv.org/pdf/math/0605049 Latest version (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:math/0605049

Access Statistics for this paper

More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().

 
Page updated 2025-03-19
Handle: RePEc:arx:papers:math/0605049