EconPapers    
Economics at your fingertips  
 

Multivariate risks and depth-trimmed regions

Ignacio Cascos and Ilya Molchanov

Papers from arXiv.org

Abstract: We describe a general framework for measuring risks, where the risk measure takes values in an abstract cone. It is shown that this approach naturally includes the classical risk measures and set-valued risk measures and yields a natural definition of vector-valued risk measures. Several main constructions of risk measures are described in this abstract axiomatic framework. It is shown that the concept of depth-trimmed (or central) regions from the multivariate statistics is closely related to the definition of risk measures. In particular, the halfspace trimming corresponds to the Value-at-Risk, while the zonoid trimming yields the expected shortfall. In the abstract framework, it is shown how to establish a both-ways correspondence between risk measures and depth-trimmed regions. It is also demonstrated how the lattice structure of the space of risk values influences this relationship.

Date: 2006-06, Revised 2006-11
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://arxiv.org/pdf/math/0606520 Latest version (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:math/0606520

Access Statistics for this paper

More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().

 
Page updated 2025-03-19
Handle: RePEc:arx:papers:math/0606520