EconPapers    
Economics at your fingertips  
 

Kinetic theory models for the distribution of wealth: power law from overlap of exponentials

Marco Patriarca, Anirban Chakraborti, Kimmo Kaski and Guido Germano

Papers from arXiv.org

Abstract: Various multi-agent models of wealth distributions defined by microscopic laws regulating the trades, with or without a saving criterion, are reviewed. We discuss and clarify the equilibrium properties of the model with constant global saving propensity, resulting in Gamma distributions, and their equivalence to the Maxwell-Boltzmann kinetic energy distribution for a system of molecules in an effective number of dimensions $D_\lambda$, related to the saving propensity $\lambda$ [M. Patriarca, A. Chakraborti, and K. Kaski, Phys. Rev. E 70 (2004) 016104]. We use these results to analyze the model in which the individual saving propensities of the agents are quenched random variables, and the tail of the equilibrium wealth distribution exhibits a Pareto law $f(x) \propto x^{-\alpha -1}$ with an exponent $\alpha=1$ [A. Chatterjee, B. K. Chakrabarti, and S. S. Manna, Physica Scripta T106 (2003) 367]. Here, we show that the observed Pareto power law can be explained as arising from the overlap of the Maxwell-Boltzmann distributions associated to the various agents, which reach an equilibrium state characterized by their individual Gamma distributions. We also consider the influence of different types of saving propensity distributions on the equilibrium state.

Date: 2005-04, Revised 2005-05
References: View complete reference list from CitEc
Citations: View citations in EconPapers (14)

Published in New Economic Windows 2, 93-110, 2005

Downloads: (external link)
http://arxiv.org/pdf/physics/0504153 Latest version (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:physics/0504153

Access Statistics for this paper

More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().

 
Page updated 2025-03-22
Handle: RePEc:arx:papers:physics/0504153