EconPapers    
Economics at your fingertips  
 

Application of Zhangs Square Root Law and Herding to Financial Markets

Friedrich Wagner

Papers from arXiv.org

Abstract: We apply an asymmetric version of Kirman's herding model to volatile financial markets. In the relation between returns and agent concentration we use the square root law proposed by Zhang. This can be derived by extending the idea of a critical mean field theory suggested by Plerou et al. We show that this model is equivalent to the so called 3/2-model of stochastic volatility. The description of the unconditional distribution for the absolute returns is in good agreement with the DAX independent whether one uses the square root or a conventional linear relation. Only the statistic of extreme events prefers the former. The description of the autocorrelations are in much better agreement for the square root law. The volatility clusters are described by a scaling law for the distribution of returns conditional to the value at the previous day in good agreement with the data.

Date: 2005-08
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
http://arxiv.org/pdf/physics/0508077 Latest version (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:physics/0508077

Access Statistics for this paper

More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().

 
Page updated 2025-03-19
Handle: RePEc:arx:papers:physics/0508077