EconPapers    
Economics at your fingertips  
 

Optimal hedging of Derivatives with transaction costs

Erik Aurell and Paolo Muratore-Ginanneschi

Papers from arXiv.org

Abstract: We investigate the optimal strategy over a finite time horizon for a portfolio of stock and bond and a derivative in an multiplicative Markovian market model with transaction costs (friction). The optimization problem is solved by a Hamilton-Bellman-Jacobi equation, which by the verification theorem has well-behaved solutions if certain conditions on a potential are satisfied. In the case at hand, these conditions simply imply arbitrage-free ("Black-Scholes") pricing of the derivative. While pricing is hence not changed by friction allow a portfolio to fluctuate around a delta hedge. In the limit of weak friction, we determine the optimal control to essentially be of two parts: a strong control, which tries to bring the stock-and-derivative portfolio towards a Black-Scholes delta hedge; and a weak control, which moves the portfolio by adding or subtracting a Black-Scholes hedge. For simplicity we assume growth-optimal investment criteria and quadratic friction.

Date: 2005-09, Revised 2005-12
References: View references in EconPapers View complete reference list from CitEc
Citations:

Published in IJTAF Vol 9, No 7 (2006), 1051-1070

Downloads: (external link)
http://arxiv.org/pdf/physics/0509150 Latest version (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:physics/0509150

Access Statistics for this paper

More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().

 
Page updated 2025-03-19
Handle: RePEc:arx:papers:physics/0509150