Delta Hedged Option Valuation with Underlying Non-Gaussian Returns
L. Moriconi
Papers from arXiv.org
Abstract:
The standard Black-Scholes theory of option pricing is extended to cope with underlying return fluctuations described by general probability distributions. A Langevin process and its related Fokker-Planck equation are devised to model the market stochastic dynamics, allowing us to write and formally solve the generalized Black-Scholes equation implied by dynamical hedging. A systematic expansion around a non-perturbative starting point is then implemented, recovering the Matacz's conjectured option pricing expression. We perform an application of our formalism to the real stock market and find clear evidence that while past financial time series can be used to evaluate option prices before the expiry date with reasonable accuracy, the stochastic character of volatility is an essential ingredient that should necessarily be taken into account in analytical option price modeling.
Date: 2006-02
References: Add references at CitEc
Citations:
Downloads: (external link)
http://arxiv.org/pdf/physics/0602048 Latest version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:physics/0602048
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().