EconPapers    
Economics at your fingertips  
 

Characterizing and modeling cyclic behavior in non-stationary time series through multi-resolution analysis

Dilip P. Ahalpara, Amit Verma, Prasanta K. Panigrahi and Jitendra C. Parikh

Papers from arXiv.org

Abstract: A method based on wavelet transform and genetic programming is proposed for characterizing and modeling variations at multiple scales in non-stationary time series. The cyclic variations, extracted by wavelets and smoothened by cubic splines, are well captured by genetic programming in the form of dynamical equations. For the purpose of illustration, we analyze two different non-stationary financial time series, S&P CNX Nifty closing index of the National Stock Exchange (India) and Dow Jones industrial average closing values through Haar, Daubechies-4 and continuous Morlet wavelets for studying the character of fluctuations at different scales, before modeling the cyclic behavior through GP. Cyclic variations emerge at intermediate time scales and the corresponding dynamical equations reveal characteristic behavior at different scales.

Date: 2006-12
References: Add references at CitEc
Citations:

Downloads: (external link)
http://arxiv.org/pdf/physics/0612221 Latest version (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:physics/0612221

Access Statistics for this paper

More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().

 
Page updated 2025-03-19
Handle: RePEc:arx:papers:physics/0612221