Evaluating Linear and Non-Linear Time-Varying Forecast-Combination Methods
Fuchun Li and
Greg Tkacz ()
Staff Working Papers from Bank of Canada
Abstract:
This paper evaluates linear and non-linear forecast-combination methods. Among the non-linear methods, we propose a nonparametric kernel-regression weighting approach that allows maximum flexibility of the weighting parameters. A Monte Carlo simulation study is performed to compare the performance of the different weighting schemes. The simulation results show that the non-linear combination methods are superior in all scenarios considered. When forecast errors are correlated across models, the nonparametric weighting scheme yields the lowest mean-squared errors. When no such correlation exists, forecasts combined using artificial neural networks are superior.
Keywords: Econometric; and; statistical; methods (search for similar items in EconPapers)
JEL-codes: C14 C53 E27 (search for similar items in EconPapers)
Pages: 24 pages
Date: 2001
New Economics Papers: this item is included in nep-cmp, nep-ecm and nep-ets
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
https://www.bankofcanada.ca/wp-content/uploads/2010/02/wp01-12.pdf
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bca:bocawp:01-12
Access Statistics for this paper
More papers in Staff Working Papers from Bank of Canada 234 Wellington Street, Ottawa, Ontario, K1A 0G9, Canada. Contact information at EDIRC.
Bibliographic data for series maintained by ().