EconPapers    
Economics at your fingertips  
 

LASSOPACK and PDSLASSO: Prediction, model selection and causal inference with regularized regression

Achim Ahrens, Christian Hansen and Mark Schaffer ()

London Stata Conference 2018 from Stata Users Group

Abstract: The field of machine learning is attracting increasing attention among social scientists and economists. At the same time, Stata offers to date only a very limited set of machine learning tools. This one-hour session introduces two Stata packages, lassopack and pdslasso, which implement regularized regression methods, including but not limited to the lasso (Tibshirani 1996 Journal of the Royal Statistical Society Series B), for Stata. The packages include features intended for prediction, model selection and causal inference, and are thus applicable in a wide range of settings. The commands allow for high-dimensional models, where the number of regressors may be large or even exceed the number of observations under the assumption of sparsity. The package lassopack implements lasso, square-root lasso (Belloni et al. 2011 Biometrika; 2014 Annals of Statistics), elastic net (Zou and Hastie 2005 Journal of the Royal Statistical Society Series B), ridge regression (Hoerl and Kennard 1970 Technometrics), adaptive lasso (Zou 2006 Journal of the American Statistical Association) and post-estimation OLS. These methods rely on tuning parameters, which determine the degree and type of penalization. lassopack supports three approaches for selecting these tuning parameters: information criteria (implemented in lasso2), K-fold and h-step ahead rolling cross-validation (cvlasso), and theory-driven penalization (rlasso) due to Belloni et al. (2012 Econometrica). In addition, rlasso implements the Chernozhukov et al. (2013 Annals of Statistics) sup-score test of joint significance of the regressors.

Date: 2018-10-15
New Economics Papers: this item is included in nep-big
References: Add references at CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://repec.org/usug2018/2018_AhrensSchaffer.pdf (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:boc:usug18:12

Access Statistics for this paper

More papers in London Stata Conference 2018 from Stata Users Group Contact information at EDIRC.
Bibliographic data for series maintained by Christopher F Baum ().

 
Page updated 2025-01-08
Handle: RePEc:boc:usug18:12