Testable Implications of Forecast Optimality
Andrew Patton and
Allan Timmermann
STICERD - Econometrics Paper Series from Suntory and Toyota International Centres for Economics and Related Disciplines, LSE
Abstract:
Evaluation of forecast optimality in economics and finance has almost exclusively been conducted on the assumption of mean squared error loss under which forecasts should be unbiased and forecast errors serially uncorrelated at the single period horizon with increasing variance as the forecast horizon grows. This paper considers properties of optimal forecasts under general loss functions and establishes new testable implications of forecast optimality. These hold when the forecaster's loss function is unknown but testable restrictions can be imposed on the data generating process, trading off conditions on the data generating process against conditions on the loss function. Finally, we propose flexible parametric estimation of the forecaster's loss function, and obtain a test of forecast optimality via a test of over-identifying restrictions.
Keywords: forecast evaluation; loss function; rationality tests (search for similar items in EconPapers)
JEL-codes: C22 C52 C53 (search for similar items in EconPapers)
Date: 2005-01
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://sticerd.lse.ac.uk/dps/em/em485.pdf (application/pdf)
Related works:
Working Paper: Testable implications of forecast optimality (2005) 
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:cep:stiecm:485
Access Statistics for this paper
More papers in STICERD - Econometrics Paper Series from Suntory and Toyota International Centres for Economics and Related Disciplines, LSE
Bibliographic data for series maintained by ().