EconPapers    
Economics at your fingertips  
 

Unit Roots, Change, and Decision Bounds

Robert Kunst ()

No 157, CESifo Working Paper Series from CESifo

Abstract: The problem of optimal decision between unit roots, trend stationarity and trend stationarity with structural breaks is considered. Each of three classes is represented by a hierarchically random process whose parameters are distributed in a non-informative way based on a simple rule. Given a well-accepted parameterization, parameters are distributed uniformly if they are bounded by admissibility conditions, and standard normally if they are unbounded. The prior frequency for all three processes is the same. Classification of observed trajectories into any of the three classes is based on two information condenser statistics *1 and *2. *1 is the traditional Dickey-Fuller t-test statistic that allows for a linear trend. *2 is a heuristic statistic that condenses information on structural breaks. Two loss functions are considered for determining decision bounds within the ( *1, *2) space. Firstly, quadratic discrete loss expresses the interest of a researcher attempting to find out the true model. Secondly, prediction error loss expresses the interest of a forecaster who sees models as intermediate aims. For both loss functions and the empirically relevant sample sizes of T = 50, 100, 150, 200, optimal decision contours are established by means of Monte Carlo simulation.

Keywords: Decision bounds; integrated processes; structural; breaks; loss function. (search for similar items in EconPapers)
Date: 1998
References: Add references at CitEc
Citations:

Downloads: (external link)
https://www.cesifo.org/DocDL/ces_wp157.pdf (application/pdf)

Related works:
Working Paper: Unit Roots, Change, and Decision Bounds (1998) Downloads
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:ces:ceswps:_157

Access Statistics for this paper

More papers in CESifo Working Paper Series from CESifo Contact information at EDIRC.
Bibliographic data for series maintained by Klaus Wohlrabe ().

 
Page updated 2025-03-30
Handle: RePEc:ces:ceswps:_157